Who Invented Radio - Marconi ?


Sir Jagadish Chandra Bose invented radio first .In November 1894, the Indian physicist, Jagadish Chandra Bose, demonstrated publicly the use of radio waves in Calcutta, but he was not interested in patenting his work. In 1894, Bose ignited gunpowder and rang a bell at a distance using electromagnetic waves, showing independently that communication signals can be sent without using wires.

Bose was not interested in the commercial applications of the experiment's transmitter. He did not try to file patent protection for sending signals. In 1899, Bose announced the development of an "iron-mercury-iron coherer with telephone detector" in a paper presented at the Royal Society, London. Later he received U.S. Patent 755,840, "Detector for electrical disturbances" (1904), for a specific electromagnetic receiver. - Read More ....

Jagadish Chandra Bose

Acharya Sir Jagadish Chandra Bose, CSI, CIE, FRS(Bengali: জগদীশ চন্দ্র বসু Jôgodish Chôndro Boshu; 30 November 1858 – 23 November 1937) was an Indian Bengali polymath: a physicist, biologist, botanist, archaeologist, as well as an early writer of science fiction. He pioneered the investigation of radio and microwave optics, made very significant contributions to plant science, and laid the foundations of experimental science in the Indian subcontinent. IEEE named him one of the fathers of radio science. He is also considered the father of Bengali science fiction. He was the first person from the Indian subcontinent to receive a US patent, in 1904. He also invented the crescograph.

Jagadish Chandra Bose in Royal Institution, London

The British theoretical physicist James Clerk Maxwell mathematically predicted the existence of electromagnetic waves of diverse wavelengths, but he died in 1879 before his prediction was experimentally verified. British physicist Oliver Lodge demonstrated the existence of Maxwell’s waves transmitted along wires in 1887–88. The German physicist Heinrich Hertz showed experimentally, in 1888, the existence of electromagnetic waves in free space. Subsequently, Lodge pursued Hertz’s work and delivered a commemorative lecture in June 1894 (after Hertz’s death) and published it in book form. Lodge’s work caught the attention of scientists in different countries including Bose in India.

The first remarkable aspect of Bose’s follow up microwave research was that he reduced the waves to the millimetre level (about 5 mm wavelength). He realised the disadvantages of long waves for studying their light-like properties.

In 1893, Nikola Tesla demonstrated the first public radio communication. One year later, during a November 1894 (or 1895) public demonstration at Town Hall of Kolkata, Bose ignited gunpowder and rang a bell at a distance using millimetre range wavelength microwaves. Lieutenant Governor Sir William Mackenzie witnessed Bose's demonstration in the Kolkata Town Hall. Bose wrote in a Bengali essay, Adrisya Alok (Invisible Light), “The invisible light can easily pass through brick walls, buildings etc. Therefore, messages can be transmitted by means of it without the mediation of wires.” In Russia, Popov performed similar experiments. In December 1895, Popov's records indicate that he hoped for distant signalling with radio waves.

Bose’s first scientific paper, “On polarisation of electric rays by double-refracting crystals” was communicated to the Asiatic Society of Bengal in May 1895, within a year of Lodge’s paper. His second paper was communicated to the Royal Society of London by Lord Rayleigh in October 1895. In December 1895, the London journal the Electrician (Vol. 36) published Bose’s paper, “On a new electro-polariscope”. At that time, the word ‘coherer’, coined by Lodge, was used in the English-speaking world for Hertzian wave receivers or detectors. The Electrician readily commented on Bose’s coherer. (December 1895). The Englishman (18 January 1896) quoted from theElectrician and commented as follows:

”Should Professor Bose succeed in perfecting and patenting his ‘Coherer’, we may in time see the whole system of coast lighting throughout the navigable world revolutionised by a Bengali scientist working single handed in our Presidency College Laboratory.”
Bose planned to “perfect his coherer” but never thought of patenting it.

In May 1897, two years after Bose's public demonstration in Kolkata, Guglielmo Marconi conducted his wireless signalling experiment on Salisbury PlainBose went to London on a lecture tour in 1896 and met Marconi, who was conducting wireless experiments for the British post office. In an interview, Bose expressed disinterest in commercial telegraphy and suggested others use his research work. In 1899, Bose announced the development of a "iron-mercury-iron coherer with telephone detector" in a paper presented at the Royal Society, London.

(As an entrepreneur, businessman, and founder of the The Wireless Telegraph & Signal Company in Britain in 1897, Marconi succeeded in making a commercial success of radio by innovating and building on the work of previous experimenters and physicists. In 1924, he was ennobled as Marchese Marconi)

Bose's demonstration of remote wireless signalling has priority over Marconi. He was the first to use a semiconductor junction to detect radio waves, and he invented various now commonplace microwave components. In 1954, Pearson and Brattain gave priority to Bose for the use of a semi-conducting crystal as a detector of radio waves. Further work at millimetre wavelengths was almost non-existent for nearly 50 years. In 1897, Bose described to the Royal Institution in London his research carried out in Kolkata at millimetre wavelengths. He used waveguides, horn antennas, dielectric lenses, various polarisers and even semiconductors at frequencies as high as 60 GHz; much of his original equipment is still in existence, now at the Bose Institute in Kolkata. A 1.3 mm multi-beam receiver now in use on the NRAO 12 Metre Telescope, Arizona, US, incorporates concepts from his original 1897 papers.

Sir Nevill Mott, Nobel Laureate in 1977 for his own contributions to solid-state electronics, remarked that "J.C. Bose was at least 60 years ahead of his time" and "In fact, he had anticipated the existence of P-type and N-type semiconductors."

Bose's 60 GHz microwave apparatus at the Bose Institute, Kolkata, India. His receiver (left) used a galena crystal detector inside a horn antenna and galvanometer to detect microwaves. Bose invented the crystal radio detector, waveguide, horn antenna, and other apparatus used at microwave frequencies.

The inventor of "Wireless Telecommunications", Bose was not interested in patenting his invention. In his Friday Evening Discourse at the Royal Institution, London, he made public his construction of the coherer. Thus The Electric Engineer expressed "surprise that no secret was at anytime made as to its construction, so that it has been open to all the world to adopt it for practical and possibly moneymaking purposes." Bose declined an offer from a wireless apparatus manufacturer for signing a remunerative agreement. Bose also recorded his attitude towards patents in his inaugural lecture at the foundation of the Bose Institute on 30 November 1917.

Diagram of microwave receiver and transmitter apparatus, from Bose's 1897 paper.

Bose’s place in history has now been re-evaluated, and he is credited with the invention of the first wireless detection device and the discovery of millimetre length electromagnetic waves and considered a pioneer in the field of biophysics.

Many of his instruments are still on display and remain largely usable now, over 100 years later. They include various antennas, polarisers, and waveguides, which remain in use in modern forms today.

On September 14, 2012, Bose's experimental work in millimeter-band radio was recognized as an IEEE Milestone in Electrical and Computer Engineering, the first such recognition of a discovery in India.

No comments:

Post a Comment